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ABSTRACT: Four near-infrared spectrophotometers, and their associated spectral collection methods, were tested and
compared for measuring three soybean single-seed attributes: weight (g), protein (%), and oil (%). Using partial least-squares
(PLS) and four preprocessing methods, the attribute that was significantly most easily predicted was seed weight (RPD > 3 on
average) and protein the least. The performance of all instruments differed from each other. Performances for oil and protein
predictions were correlated with the instrument sampling system, with the best predictions using spectra taken from more than
one seed angle. This was facilitated by the seed spinning or tumbling during spectral collection as opposed to static sampling
methods. From the preprocessing methods utilized, no single one gave the best overall performances but weight measurements
were often more successful with raw spectra, whereas protein and oil predictions were often enhanced by SNV and SNV +
detrending.
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■ INTRODUCTION

For plant-breeding facilities, obtaining the right genetic material
involves a careful selection of the best individual traits. During
the selection process, a large number of seed lines are often
produced and, consequently, a large number of samples must
be evaluated; if the heritability of a desired trait is low, only a
small fraction from the total may be of interest. Nondestructive
selection of single seeds according to the specific attribute of
interest would make the breeding process much faster and
more efficient. Near-infrared spectroscopy (NIRS) technologies
are highly suitable for breeders because they offer the advantage
of performing multiple-trait nondestructive analysis in a
relatively short time. In general, NIRS has experienced rapid
growth in the past 20 years for compositional measurement of
agricultural products. This growth has occurred due to better
and less expensive hardware implementations coupled with the
need for improved quality control of agricultural products and
investigations into novel uses.
The near-infrared (NIR) electromagnetic region (700−2500

nm) is absorbed by CH, OH, NH, and CO bonds,
which are prevalent in water and organic compounds such as
carbohydrates, proteins, oils, or alcohols. The amount of

absorbed light is proportional to the compound concentration
in accordance with Beer’s law in scattering media such as
agricultural compounds. There are two basic or traditional
measurement modes in NIRS instrumentation for agricultural
analysis: transmittance and reflectance. In transmittance mode,
radiation impinges on the sample with a fraction of the
radiation being absorbed by the organic compounds, whereas
the remaining fraction passes through the sample and is
measured by a sensor. Reflectance measurements are based on
sensing diffusely reflected radiation that penetrates to only a
shallow depth of a few millimeters into the sample. Other
modes of measurement such as transflection or interactance are
very popular in fruit quality and medical sciences. Measure-
ments by transflection are mainly, but not exclusively, done on
liquid samples. Samples are placed on sampling cells with a
backing reflective plate such that NIR radiation penetrates the
sample and is reflected by the plate. Interactance measurements
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are made with the detector parallel to the radiation source,
avoiding the collection of specular reflectance. The signal from
any of the measurement modes is then mathematically
transformed to absorbance spectra to improve its correlation
with the concentration of the analyzed compound.
Both reflectance and transmittance modes have been utilized

for NIRS single-seed analysis. One of the challenges for these
analyses is the small and variable size of the seeds. The shape,
size, and inhomogeneity of seeds produce NIR light scattering
(i.e., radiation that enters the sample surface and emerges at
many angles), which are translated in multiplicative effects on
the absorbance spectra.1 Cogdill et al.2 found changes in corn
kernel size affected the light path length and calibration
performance when measuring oil in corn kernels. Reflectance
measurements may not be affected by sample path length, but
kernel size and the surface exposed to radiation contribute to
differences in focal distance, changes in directions of reflected
light, and loss of radiation on the background.3 Furthermore,
higher wavelengths sometimes involved in this measurement
mode may not produce linear responses between spectra and
compound concentrations in single-kernel analysis.4

Some research has reported NIRS calibrations for predicting
the major attributes of single soybeans. The first NIRS study
analyzing single soybeans determined moisture by trans-
mittance (standard error of prediction (SEP) = 0.65−
0.69%).5 Armstrong later obtained better cross-validation
results with the USDA light tube reflectance instrument
(SECV = 0.32%), which scans the bean while tumbling.6

Armstrong also developed PLS protein calibrations (SECV =
0.99%), with results on the same order as those of Tajuddin et
al.7 (SEP = 1.32%), who used a transmittance instrument and
large-diameter soybeans (>6 mm). However, older research by
Abe et al.8 reported a protein calibration with an even lower
SEP (0.67%). Those results were achieved utilizing the average
of two transmittance spectra taken at two measurement points.
Baianu et al.9 obtained lower cross-validation errors for protein
compared to Armstrong’s when using a Fourier transform (FT)
reflectance instrument (SECV = 0.77%), but results using a
diode array reflectance instrument were of the same order
(SECV = 1.10%).6,7 Delwiche et al.10 developed protein and
inorganic phosphorus calibrations using absolute units
(RMSEP = 13.93 g/kg and 568.6 mg/kg, respectively).
However, those calibrations had low predictive ability (RPD
= 1.20).

Oil content has been also successfully measured in single
soybeans. Tajuddin et al.7 reported SEPs ranging from 1.32 to
1.57%. Baianu et al.9 again obtained lower cross-validation
prediction errors with the FT-NIR instrument than those from
the diode array reflectance (SECV = 0.20 and 0.50%,
respectively). From their results it was suggested that FT
instruments showed significant advantages for predicting single-
seed attributes due to the narrow light beam and accuracy in
wavelength measurement.
Despite all available literature reporting successful soybean

seed calibrations, comparing the performance among instru-
ments and technologies is not possible because of the variety of
factors involved. First, samples involved in the calibration and
validation sets were not the same. Research was developed on
calibration and validation sets with a different concentration
range and standard deviation of the compound to be measured,
so even if the SEP among studies were the same, the predictive
ability of the calibrations would not be the same according to
the RPD (standard deviation of the validation set divided by
the standard error of prediction).11 The numbers of samples
and seeds, seed size, or crop years are also well-known factors
that influence the robustness and calibration performance.
Second, statistics utilized to report the validation results are not
comparable. Statistics such as the RPD ratio express the
calibration predictive ability and account for the concentration
range in the validation set, making calibration performances
among different instruments and sample sets more comparable.
However, the SEP and the coefficient of determination (R2)
were the most common statistics to report calibration precision
and explained variability, respectively. Early research erro-
neously focused on R2 values, which are dependent on the
compound range. On the other hand, the validation of the
calibrations was often not performed utilizing a completely
independent validation set (seeds from samples not contained
in the calibration set and belonging to a different crop year), or
cross-validation statistics were reported instead, which may lead
to overoptimistic results.
Finally, the moisture basis on which results are expressed

must also be taken into account (i.e., dry weight, 13% weight
moisture basis, or as-is weight) as well as the different reference
methods employed for oil (hexane extraction and nuclear
magnetic resonance (NMR)) and protein quantification
(combustion, biuret, and NMR). Pulsed low-resolution NMR
gives better repeatability than Soxhlet or supercritical fluid

Figure 1. Plot of bulk compositions of the 20 selected samples (percentage protein and oil, 13% weight moisture basis).
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extraction, as pointed out by Robertson and Windham12 and
Cogdill et al.,2 who targeted the reference method as one of the
sources of error for their corn kernel oil calibration. Those
factors add variable sources of error to the published research.
In this study we tested the performance of four NIR

instruments with different measurement methods to develop
single soybean seed calibrations for oil, protein, and weight
using the same seeds. The validation was carried with an
independent sample set. Two of the instruments are well-
known for product analysis, one is utilized for pharmaceutical
analysis, and the fourth instrument was specifically built for
single-seed analysis. We compared the instruments with their
most suitable modules for single-seed analysis, in terms of their
calibration performances for all of the attributes (oil, protein,
and weight), utilizing raw and preprocessed spectra. Four
common spectra preprocessing methods and combinations of
those were tested. Two of the instruments, which extended up
to the combination band spectral region (2500 nm), were
considered as two independent instruments after the develop-
ment of calibrations utilizing the entire available NIR spectral
range (900−2500 nm) and up to the first overtone region
(900−1650 nm), to test for significant changes of performances
between these ranges. Baianu et al.9 obtained the best results
with FT-NIR instruments covering up to the combination band
region (2400 nm), but Delwiche4 suggested that higher
wavelengths show possible nonlinearities when measuring
single seeds, so we wanted to test if there was a significant
improvement when omitted.

■ MATERIALS AND METHODS
Sample Sets. Twenty soybean samples from 1993, 1994, 2008, and

2009 crop years were selected from the Grain Quality Laboratory
(Iowa State University, Ames, IA, USA). The bulk sample composition
of oil and protein covered a wide compositional range (Figure 1).
Twenty-four seeds were randomly picked from each sample and
scanned by the instruments (480 seeds total). The seeds were then
placed into 10 48-well plates and sent for oil analysis at the USDA
NCAUR in Peoria, IL, USA. Total oil and moisture, expressed as mgs
mass, was determined by NMR (AOCS method Ak 4-95 (09)) using
an mq20 minpec (Bruker Optik GmbH, Ettlingen, Germany).
Individual seed mass and the corresponding oil and moisture masses
were used to convert oil values to a percentage dry matter basis. Seeds
were then measured for protein content by the Soil Testing
Laboratory at Iowa State University with a Truspec CN analyzer
(Leco Corp., St. Joseph, MI, USA) using the combustion method
(AOCS method Ba 4e-93 (09)). Twenty-two of the initial 24 seeds per

sample were analyzed (440 seeds total); the remaining 2 were retained
for future work.

Instruments. Three commercial NIR spectrometers (referred to as
A, B, and C) were used in this study to compare the prediction ability
of single-seed soybean content. The manufacturer of each instrument
is omitted as the study does not intend to compare instrument models,
but different instrument conformations and sampling methods in
single-seed analyses. The fourth instrument included in the study, the
light tube CDI NIR256, was a noncommercial instrument built by the
U.S. Department of Agriculture, Center for Grain and Animal Health
Research (USDA, CGHAR) Manhattan, KS, USA. Table 1 shows the
specifications of the four spectrometers. The spectral working range
was obtained after removal of visibly noisy wavelength extremes and
adjusting to a standard range (900−1650 nm) when appropriate.
Because two of the instruments, A and B, cover the vis range up to the
NIR combination band region (400−2500 nm), calibrations were
developed for both first- and second-overtone range (up to 1650 nm)
and the whole NIR range (up to 2400 nm) to test for performance
differences from each spectral range. The two instruments use different
detector types to cover the different NIR regions; therefore, there is an
impact on the spectra at the wavelengths of detector change. Hence,
the two data points on each side of the wavelength crossover (1000
and 1974 nm for instrument A and 1100 for instrument B) were
removed.

The specific mechanisms used to collect spectra for each
spectrometer are described as follows. For instrument A, a high-
intensity light accessory with an independent halogen light was utilized
and connected to the instrument through an optic fiber collecting
probe provided by the company. The probe collected the diffuse
reflectance signal at an angle designed to avoid specular reflection.
Individual seeds were always placed on the same spot of the sampling
glass surface, defined by a sample tray (maximum diameter of 12 mm).
Spectralon was utilized as reference material every 20 min. Three
consecutive spectra were taken and averaged for each seed without the
seed's being moved from its initial position.

For instrument B, a small ring rotatory cup module was utilized to
analyze each seed. Seeds were individually placed on the center of the
cup, positioned in a small indenture on a blank circular supporting
material. The material, provided by the manufacturer, served to hold
the seed during cup rotation. Twenty-five spectra were taken for each
rotating seed and co-added by the instrument.

For instrument C, designed for pharmaceutical products, a tablet
measurement cell accessory with 10 iris aperture wells was used to
collect transmission spectra. The hole where the light beam passed
through the seed was always smaller than the seed surface, which helps
reduce possible scattering effects that would be otherwise produced by
seed edges. Sixty-four spectra were collected and averaged by the
instrument software for each seed.

The light tube CDI NIR256 was specifically designed to analyze
single seeds. Spectra of individual seeds are taken as they fall by gravity
through an illuminated borosilicate light tube. The specifics of this

Table 1. Instrument Specificationsa

instrument technology spectral range working spectral range
sampling
interval resolution

sampling
system

A reflectance Si and InGaAs diode
array

350−2500 nm 900−2250 nm (1) 1 nm 3 nm, 10 nm static
900−1650 nm (2)

B reflectance monochromator 400−2498 nm 900−2400 nm (1) 2 nm 10 nm rotating cell
Si and lead sulfide detectors 900−1650 nm (2)

C transmittance 6000−11520 cm−1 6060−10528 cm−1 4 cm−1 8 cm−1b static
Fourier transform 868.1−1666.7 nm 950.75−1650.17 nm

CDI NIR256-1.7T1
(light tube)

reflectance InGaAs diode array 904−1686 nm 955−1635 nm 1 nm 3 nm random
tumbling

aFor instruments covering up to 2500 nm, calibrations with both the entire NIR region (1) and excluding the combination band region (2) were
developed. bBoxcar apodization.
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design are explained by Armstrong6 and Tallada et al.,13 Three spectra
were taken from each seed; that is, the seed was dropped three times
through the light tube, and spectra were averaged after mean centering
to remove the significant offset differences between spectra.
Spectral Data Preprocessing. Raw and preprocessed spectra

with four common pretreatments were utilized for calibration
development: raw spectra, standard normal variate (SNV), seven-
point window average smoothing (smt), SNV with second-degree
polynomial detrending (SNV + detr), and SNV with second-degree
polynomial detrending and seven-point average smoothing (SNV +
detr + smt).
Calibration and Validation. Spectra obtained from the 1993 crop

year samples (3 samples, 72 seeds for both oil and weight, 54 for
protein after 11 seeds were discarded during protein combustion
measurements) were kept as an independent validation set because
these samples had compound ranges equivalent to the calibration set
ranges, and thus no prediction extrapolation would occur. The
remaining samples (17) were used as the calibration set (408 seeds for
oil and weight and 374 for protein). Table 2 shows the descriptive

statistics of each set. For protein, the seeds that had protein content
>55% were removed as the reference laboratory flagged them as
possible outliers as well as outliers in the NIR calibration modeling.
Calibration models were developed using partial least squares (PLS-1)
regression for each combination of instrument, preprocessing, and
compound (for information regarding PLS, refer to Naes et al.14). A
total of 90 calibrations were developed. Spectral data, raw and
preprocessed, were mean-centered prior to PLS software modeling.
The modeling software used was The Unscrambler v. 9.8 (Camo
Software AS, Oslo, Norway). Outliers were detected by visual
inspection of spectral plots, by inspection of the residual versus
leverage plots, and by the built-in outlier detection system employed
by the software, which is based on a combination of limits for sample
leverage, residuals, and explained variance. The optimal number of
latent variables for the model was determined by 15 segment cross-
validation as suggested by the software. The software selects latent
variables according to either the first local minimum from the residual
variance curve or last largest significant decrease of variance from the
previous model developed with one less latent variable from what was
determined by the F test.
Experimental Design. To compare the effects of instrument,

attribute, and preprocessing methods on calibration performance, a
factorial ANOVA least-squares was performed. The dependent variable
and a standardized indicator of calibration performance was the RPD

ratio.11 This ratio was also utilized by Kovalenko et al.15 to compare
instrument and calibration methods to predict amino acids in bulk
soybeans. Calibration models with RPDs < 1.4 are not usable; RPDs
between 1.4 and 1.7 are usable for rough screening; RPDs between 1.7
and 2.42 are usable for screening; and RPDS between 2.42 and 3 are
usable for most applications with caution; RPDS between 3 and 5 are
usable for most applications, and RPDs > 5 are usable for quantitative
purposes.11 The three main factors were the instrument (I), attribute
(A), and preprocessing method (P). All three were considered to be
fixed effects, and second-degree interactions were initially included in
the model. The third-degree interaction (I × A × P) was pulled out as
the error term (E) because the model did not have repetitions. The
least-squares fit had the following form:

= + + + + × + ×

+ × +

RPD intercept I A P (I C) (C P)

(I P) E (1)

The Sidak method was utilized for pairwise comparison of means. The
ANOVA analysis was performed using IBM SPSS Statistics 17.0
software (Armonk, NY, USA).

■ RESULTS AND DISCUSSION

Calibrations and Overall Observations. Tables 3−8
summarize the best two calibrations per each instrument and
compound, based on the best independent validation
predictions. Because bias values refer to the systematic error
and can be easily removed by subtraction from the predicted
values, we did not focus on these statistic values as much as on
the SEP (random error) and RPD (calibration predictive
ability). For all models and instruments the heaviest seed
(0.280 g) and three seeds with protein below 20% were
removed because they could not be modeled properly, probably
because the relationship was not linear at such a low
concentration range.
Instrument A performance statistics were the poorest overall

(Tables 3 and 4). For oil, most of the calibrations were suitable
for rough screening (RPDs > 1.40), but protein calibrations
were not usable (RPD of 1.00, on average), and were similar to
what Delwiche et al.10 obtained when developing protein
calibrations with absolute reference units (mg/g). The best
calibrations were achieved for weight. There were some
problems in the modeling such as the presence of clustering
in the latent variable score plots for all attributes. The origin of
the clusters could not be determined, but it was probably due to
light scattering from slight sample positioning changes and seed
shape differences, as seeds from the same sample tend to group
in the same cluster. Preprocessing with SNV accentuated this
problem, as shown in the oil calibration score plot with SNV
preprocessing (Figure 2). SNV is proven to minimize scattering
effects, but probably the combination and interaction of several
factors producing scattering cannot be successfully addressed
by SNV. The characteristics of these results suggest that the use

Table 2. Descriptive Statistics of Calibration and Validation
Sets

set compound n min max SD mean

calibration oil (%) 408 12.0 29.7 4.0 19.9
protein (%) 377 16.0 52.4 7.4 37.7
weight (g) 408 0.068 0.277 0.034 0.148

validation oil (%) 72 14.0 22.7 2.2 18.2
protein (%) 56 33.2 44.2 2.1 39.0
weight (g) 71 0.070 0.266 0.043 0.138

Table 3. Statistics of the Two Best Calibrations for Instrument A, Entire NIR Range (900−2250 nm)

calibration independent validation

preprocessing n LVs SEC (%) R2 (%) SECV (%) SEP (%) RPD bias (%)

oil (%) raw 397 14 0.69 96.83 1.38 1.44 1.52 1.03
SNV + Detr + smt 403 12 1.00 93.21 1.35 1.46 1.50 0.75

protein (%) raw 365 11 1.68 94.32 2.49 1.86 1.10 −0.40
SNV + Detr 353 10 1.74 93.93 2.46 1.91 1.07 −0.52

weight (g) raw 399 9 0.014 83.45 0.015 0.011 4.095 0.005
smt 399 9 0.014 82.00 0.015 0.011 4.095 −0.005
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of local models or several PLS submodels based on seed weight
would be more suitable than a single PLS model.
Each seed spectrum, which resulted from averaging three

spectra, was visually noisy. That was particularly true at higher
wavelengths and shown in their respective regression

coefficients, indicating that those calibrations may not be
robust. Regression coefficients were similar to overfitting a
model, and reducing the number of latent variables in one or
two factors did not bring any improvement. Reducing the
working wavelength range (Table 3) did not improve
calibration performance and still led to noisy regression
coefficients, but the ability for predicting weight decreased.
This could be due to the fact that there is more scattering at
lower wavelengths, a phenomenon correlated with sample size.
From these results, we can conclude that the use of the
accessory for static measurements with the single measuring
fiber is not suitable for analyzing spherical seeds such as
soybeans: It is extremely sensitive to seed position and size.
For relative comparison, the USDA light tube (Table 5), also

a diode array instrument, did not show such noisy regression
coefficients, gave better results for weight, and outperformed all
instruments in protein and oil predictions with the highest RPD
values (above 4 and 3, respectively). The SEP values for protein
were close to those obtained by Abe et al.8 (SEP = 0.67% pts),
who measured the seeds from two different angles with a
transmittance instrument. None of the preprocessing methods
made a large difference for instrument A calibration statistics,
whetrsd the USDA light tube had better performances using
SNV and SNV + detrending for oil and protein. However, SNV

Table 4. Statistics of the Two Best Calibrations for Instrument A, Short Working Range (900−1650 nm)

calibration independent validation

preprocessing n LVs SEC (%) R2 (%) SECV (%) SEP (%) RPD bias (%)

oil (%) raw 400 9 1.1 91.88 1.31 1.47 1.49 0.98
smt 401 9 1.19 90.48 1.32 1.5 1.46 −1.05

protein (%) smt 365 10 1.73 93.71 1.97 1.56 1.31 −0.06
SNV 360 9 1.7 94.31 2.04 1.56 1.31 0.31

weight (g) raw 400 10 0.012 86.16 0.015 0.014 3.07 −0.004
smt 397 10 0.013 84.25 0.015 0.013 3.31 −0.004

Table 5. Statistics of the Two Best Calibrations for the USDA Light Tube Instrument

calibration independent validation

preprocessing n LVs SEC (%) R2 (%) SECV (%) SEP (%) RPD bias (%)

oil (%) SNV + detr 345 6 0.54 97.99 0.56 0.56 4.46 0.39
SNV + detr + smt 357 6 0.55 97.99 0.57 0.55 4.55 0.43

protein (%) SNV 330 5 1.06 97.97 1.10 0.65 3.23 −0.14
SNV + detr + smt 317 4 1.12 97.78 1.15 0.64 3.28 0.05

weight (g) raw 356 9 0.010 91.18 0.01 0.010 4.34 0.002
smt 365 9 0.010 90.59 0.011 0.010 4.39 0.003

Table 8. Statistics of the Two Best Calibrations for Instrument C

calibration independent validation

preprocessing n LVs SEC (%) R2 (%) SECV (%) SEP (%) RPD bias (%)

oil (%) raw 411 3 1.10 92.11 1.11 0.78 2.81 0.98
SNV 400 1 0.99 93.59 0.99 0.77 2.84 0.73

protein (%) SNV 356 3 1.66 94.4 1.68 1.19 1.72 0.56
SNV + detr 360 3 1.97 92.09 2.01 1.25 1.64 0.78

weight (g) raw 414 11 0.016 78.15 0.016 0.015 2.87 0.012
smt 414 10 0.016 77.48 0.017 0.016 2.69 0.013

Figure 2. Score plots of LV1 versus LV2 from instrument A whole
range PLS oil calibration and SNV preprocessed spectra, showing
clustering.
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greatly diminished weight predictions for both instruments as
these preprocessing methods reduce the light-scattering effects
in the spectrum, phenomena attributed to seed size/weight.
With regard to weight predictions, the statistics are only slightly
better than the ones from instrument A with the static
measurements (RPD around 4). Light scattering generated
from seed size or shape may be diminished when combining
the seed tumbling motion and the combination of two
measurements taken from two opposite sides of the seed.
Instrument B, using the 900−2400 nm range, gave better oil

calibration performance compared to the 900−1650 nm range
(RPD of 2.5 vs 2.23), but this was reversed for protein (2.03 vs
2.33) (Tables 6 and 7). Working with the shorter range did
make a noticeable difference in predicting weight; SEP
improved from 0.008 to 0.006 g (Table 6). When the entire
NIR region was studied, seed weight calibrations were not
influenced by preprocessing. Although raw and smoothed
spectra calibrations are reported in Table 6, the same validation
results were achieved with three preprocessing methods left.
Regardless of the wavelength range, instrument B was the best
for predicting seed weight, with RPDs > 5. This could be due to
the fact that the seed was held by the spinning cell blank
material provided by the manufacturer, and it was scanned
together with the seed. This material, although not interfering
in predicting sample attributes, will have its own spectrum. The
correlation of seed area with weight (probably stronger at
shorter wavelengths) may have helped the sampling method
and instrument to outperform others for seed weight
prediction.
Instrument C did not show any artifacts in the score plots,

but did show possible nonlinearities when working with raw
spectra: subtle skewing of the data is noticeable in prediction
and reference data (Figure 3). Using more or fewer latent
variables did not remove this effect, but spectra preprocessing
did improve it. Protein calibrations could be used for rough
screening (RPDs > 1.4), whereas oil and weight calibrations
were more quantitative (Table 8). Observation of the oil

regression coefficients reveals that higher wavelengths (lower
wavenumbers) have more weight in the calibrations (Figure 4).
Bulk transmittance instruments for grain analysis often work in
the region from 800 to 1100 nm and give very good
predictions. As such PLS model calibrations were also
developed for instrument C using the transmittance range of
868−1100.35 nm (9088−11520 cm−1) but no improvement
was found in predicting oil (SEP = 0.78% and RPD = 2.77,
SNV preprocessing), protein (SEP = 1.22% and RPD = 1.68,
SNV preprocessing), or weight (SEP = 0.0019 g and RPD =
2.69, raw absorbance data). The number of latent variables
needed for oil predictions by instrument C was the lowest of all
instruments. For all of the SNV-based preprocessing methods,
only one latent variable was required for the calibration (and
only three were required with both raw absorbance and

Table 6. Statistics of the Two Best Calibrations for Instrument B, Entire NIR Range (900−2400 nm)

calibration independent validation

preprocessing n LVs SEC (%) R2 (%) SECV (%) SEP (%) RPD bias (%)

oil (%) raw 394 8 0.87 94.99 0.92 0.87 2.52 0.22
smt 394 8 0.89 94.87 0.93 0.87 2.52 0.22

protein (%) smt 359 9 1.88 92.80 1.96 1.04 1.97 −0.49
SNV 325 8 1.75 93.61 1.86 1.01 2.03 0.00

weight (g) raw 391 7 0.006 96.50 0.006 0.008 5.38 0.001
smt 392 7 0.006 96.55 0.007 0.008 5.38 0.001

Table 7. Statistics of the Two Best Calibrations for Instrument B, Short NIR Range (900−1650 nm)

calibration independent validation

preprocessing n LVs SEC (%) R2 (%) SECV (%) SEP (%) RPD bias (%)

oil (%) SNV 348 7 0.69 96.69 0.72 1.00 2.19 0.201
SNV + detr 342 3 1.00 92.77 1.01 0.98 2.23 −0.09

protein (%) SNV + detr 302 8 1.39 95.78 1.47 0.88 2.33 −0.20
SNV + detr + smt 307 8 1.42 95.69 1.50 0.92 2.23 −0.23

weight (g) raw 349 7 0.007 95.95 0.007 0.006 7.82 0.001
smt 351 7 0.007 95.93 0.007 0.006 7.82 0.001

Figure 3. Oil calibration with instrument C raw spectra. Seeds above
24% and below 16% are underpredicted, whereas the range between
17 and 21% is mainly overpredicted.
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smoothed data). In practice, this would indicate an inability to
model the data. However, both cross-validation and validation
statistics showed that the model had predictive ability, and a
univariate linear regression between the first latent variable
scores and reference values may be enough to obtain a
calibration for screening. In our study, the advantage of FT-
NIR technology, such as higher signal to noise ratio, did not
translate in better performances as Baianu et al.9 reported,
although they had worked with reflectance mode and higher
resolutions (4 cm−1). Resolution, however, is not usually a
relevant factor when one is working with agricultural samples
because their absorption bands are broad. For instance,
resolutions of 5 nm or 16 cm−1 were found to be suitable for
fruit and soybean amino acids, respectively.9,16 High resolutions
may even add spectral artifacts and decrease calibration
performances as shown for soybean bulk samples.17 Further
studies could be performed to test the effect of spectral
resolution on single-seed analysis.
It is interesting to note for most protein calibrations and all

instruments, oil calibrations for instrument C and the USDA
light tube, and weight calibrations for instrument A and B, the
SECV values were higher than SEP values from the
independent sample set. This may occur because protein
calibrations were developed from a set with a wide range and
standard deviation of the compound of interest, with a
distribution not entirely uniform but having fewer samples
with high and low concentrations. N-Folded cross-validation
may split data into random groups with both wide and short
reference ranges. This leads to a high likelihood of
extrapolation in the cross-validation submodels, cumulating
high prediction errors. In that case, SECV was pessimistic. Data
artifacts may have also influenced the higher SECV values of
the instrument B calibrations.
Comparison of Performance. Table 9 shows the ANOVA

results. The RPD, as a dependent variable, was transformed to
its inverse (1/RPD) to address a suspicious trend in residuals.
With that transformation, a possible violation of the
homoscedasticity assumption of ANOVA regression was
eliminated. All of the analyses were carried with that
transformation, although Figures 5 and 6 use the original
RPD values for clearer interpretation of results.
The differences in performances (1/RPD) between the

principal factor attributes and instruments were significant at
the 0.05 level, so at least one attribute and one instrument

differed in achieved performances from the rest. The
interactions attribute × preprocessing and attribute × instru-
ment were found to be significant at the 0.05 level. From the
Sidak pairwise comparison test, the performance differences
between working with the entire NIR range and shorter
wavelength range were not significant for either instrument A
or instrument B. However, all instruments were different from
each other in terms of performances or average RPDs.
From the interaction plot with the original RPD values

(Figure 5), we can see that although both instruments A and B
did not have significant differences in overall calibration
performances for all attributes and preprocessing methods
comparing the entire wavelength range with the reduced
wavelength range, there were appreciable differences when
measuring seed weight (significant instrument × attribute
interaction). The reduced NIR range improved the predictive
ability of instrument A for measuring weight, whereas the
opposite was true for instrument B. This could be related to the
sampling method: for instrument A the measurements were
statically taken without a background; measurements on
instrument B were taken on a spinning seed against a
background material that could have contributed to the
improvement in weight prediction using lower wavelengths.
Instrument A performed the worst overall. Instrument C,

although having the second-best performance in oil prediction,
was next after instrument A in worst overall performance.
Instrument C was the worst in predicting seed weight, probably
because spectra were taken from a small portion of the seed.
The best instrument, with larger average RPD across attributes
and preprocessing methods, was the USDA light tube, followed
by instrument B. According to these results and in agreement
with previous publications, sample positioning and sampling
method are of major relevance to develop single-soybean
calibrations. Although measurements in transmittance mode
may be comparable to or better than the reflectance mode for
static sampling, to achieve significantly better predictive models
the seed must be scanned from as many angles as possible.
Factors such as measurement mode, sampling increment, or
other instrument characteristics are not as relevant as the
sampling method. The results confirm findings by Delwiche18

on wheat and by Janni et al. on corn kernels;19 they suggested
averaging multiple measurements at different points and
homogeneous illumination of the kernel to improve single-
seed calibrations. The results indicate that a number of
measurements should be taken from different angles and, in

Figure 4. PLS regression coefficients for raw oil calibration, instrument
C (FT transmittance).

Table 9. Results of Three-Factor ANOVA with Double
Interactionsa

source

degrees
of

freedom

type III
sum of
squares

mean
squares F value significance

total 89 4.25
attributes 2 1.77 0.89 449.60 0.000
preprocessing 4 0.00 0.00 0.51 0.728
instrument 5 1.43 0.29 145.31 0.000
preprocessing ×
instrument

20 0.02 0.00 0.58 0.907

attributes ×
preprocessing

8 0.05 0.01 3.22 0.006

attributes ×
instrument

10 0.88 0.09 44.74 0.000

error 40 0.08 0.00
aThe dependent variable was the inverse of the RPD.
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the case of working with an instrument with a static sampling
system, averaging several spectra from the seed repositioned
several times on the sampling surface. The USDA light tube
achieves this effect thanks to the complete illumination of the
tumbling seed. Instrument B takes the spectra from only one
side of the seed, but the spinning cup allows collection of
spectral information from many angles compared to static
sampling instruments (A and C). However, it is unknown if
performing multiple static measurements and co-adding spectra
could lead to the same performance as taking the measure-
ments while the seed is in motion.
The overall differences of performance among attributes

were significant between each other according to the Sidak
pairwise comparison of means. Seed weight predictions were
the most accurate overall, followed by oil and protein,
respectively. As can be seen from the interaction plot (Figure
6), SNV accompanied with other combinations of preprocess-
ing decrease the predictive ability of weight calibrations. This
preprocessing method also affects calibrations developed with
absolute units,20 which suggests that SNV attenuates the effects
of seed size and thus negatively affects the prediction of seed
weight. Conversely, SNV tends to improve oil and protein
prediction for composition expressed in percent thanks to the

removal of unnecessary spectral information induced by seed
size.
In summary, weight is the best measurable attribute overall

for all instruments except C. Oil predictions were generally
better than protein, and the best calibrations in terms of
predictive ability (RPD) and standard error of prediction (SEP)
were obtained from the USDA light tube. There seemed to be a
correlation between calibration performance for both oil and
protein and for sampling method, that is, static or dynamic
(spectra taken from different seed sides or angles). This factor
has been shown to be far more relevant than other instrument
characteristics such as technology (monochromator, diode
array, FT), measurement mode (transmittance, reflectance),
sampling interval, or wavelength range. RPD results show the
best performanced for protein and oil came from the USDA
light tube and the worst, from instrument A. For seed weight,
instrument B with the spinning cup outperformed the other
instruments.
There was no best preprocessing method or combination

overall. SNV and SNV + detrending, however, gave the best
results for the light tube and most of the other instruments for
protein and oil predictions. In the prediction of weight, raw
spectra or smoothing was usually the best option as SNV
removes information related to seed size and weight.

Figure 5. Plot of attribute × instrument interaction with the ANOVA estimated RPD means (A.1 and B.1 are based on calibrations with wavelengths
up to 2400 nm; A.2 and B.2 are the same instruments working using the shorter wavelength range).

Figure 6. Interaction plot of preprocessing × attributes with the ANOVA estimated RPD means.

Journal of Agricultural and Food Chemistry Article

dx.doi.org/10.1021/jf3012807 | J. Agric. Food Chem. 2012, 60, 8314−83228321



■ AUTHOR INFORMATION

Corresponding Author
*Postal address: 1545 Food Science Building, Iowa State
University, Ames, IA 50014. E-mail: esteve.lidia@gmail.com.
Phone: (515) 294-8629.

Notes
The authors declare no competing financial interest.

■ REFERENCES
(1) Kortum, G. Reflectance Spectroscopy: Principles, Methods,
Applications (translated from German by Lohr, J. E.); Springer: New
York, 1969.
(2) Cogdill, R. P.; Hurburgh, C. R., Jr.; Rippke, G. R. Single-kernel
maize analysis by near-infrared hyperspectral imaging. Trans. ASABE
2004, 47 (1), 311−320.
(3) Wang, D.; Dowell, F. E.; Lacey, R. E. Single wheat kernel size
effects on near infrared reflectance spectra and color classification.
Cereal Chem. 1999, 76, 34−37.
(4) Delwiche, S. R. Protein content of single kernels of wheat by near
infrared reflectance spectroscopy. J. Cereal Sci. 1998, 72, 241−254.
(5) Lamb, D. T.; Hurburgh, C. R., Jr. Moisture determination in
single soybean seeds by near-infrared transmittance. Trans. ASABE
1991, 34 (5), 2123−2129.
(6) Armstrong, P. R. Rapid single-kernel nir measurement of grain
and oil-seed attributes. Appl. Eng. Agric 2006, 22 (5), 767−772.
(7) Tajuddin, T.; Watanabe, S.; Masuda, R.; Harada, K.; Kawano, S.
Application of near infrared transmittance spectroscopy to the
estimation of protein and lipid contents in singke seeds of soybean
recombinant inbred lines for quantitative trait loci analysis. J. Near
Infrared Spectrosc. 2002, 10 (4), 315−325.
(8) Abe, H.; Kusama, T.; Kawano, S.; Iwamoto, M. Non-destructive
determination of protein content in a single kernel of wheat and
soybean by near-infrared spectroscopy. In The Future Waves; Davies,
A., Williams, P., Eds.; NIR Publications: Chichester, U.K., 1996.
(9) Baianu, I. C.; You, T.; Costescu, D. M.; Lozano, P. R.; Prisecaru,
V.; Nelson, R. L. High-resolution nuclear magnetic resonance and
near-infrared determination of soybean oil, protein, and amino acid
residues in soybean seeds. In Oil Extraction and Analysis, Critical Issues
and Comparative Studies; Luthria, D. L., Ed.; AOCS Press: Champaign,
IL, 2004.
(10) Delwiche, S. R.; Pordesimo, L. O.; Scaboo, A. M.; Pantalone, V.
R. Measurement of inorganic phosphorous in soybeans by near-
infrared spectroscopy. J. Agric. Food Chem. 2006, 54, 6951−6956.
(11) Near-Infrared Technology in the Agricultural and Food Industries,
2nd ed.; Williams, P., Norris, K., Eds.; AACC: St. Paul, MN, 2001.
(12) Robertson, J. A.; Windham, W. R. Comparative study of
methods of determining oil content of sunflower seed. J. Am. Oil
Chem. Soc. 1981, 58 (11), 993−996.
(13) Tallada, J. G.; Palacios-Rojas, N.; Armstrong, P. R. Prediction of
maize seed attributes using a rapid single kernel near infrared
instrument. J. Cereal Sci. 2009, 50, 381−387.
(14) Næs, T.; Isaksson, T.; Fearn, T.; Davies, T. A User-Friendly
Guide to MultiVariate Calibration and Classification; NIR Publications:
Chichester, U.K., 2002.
(15) Kovalenko, I. V.; Rippke, G. R.; Hurburgh, C. R., Jr.
Determination of amino acid composition of soybeans (Glycine
max) by near-infrared spectroscopy. J. Agric. Food Chem. 2006, 54,
3485−3491.
(16) Nicola, B. M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.;
Theron, K. I.; Lammertyn, J. Nondestructive measurement of fruit and
vegetable quality by means of NIR spectroscopy: a review. Postharvest
Biol. Technol. 2007, 46, 99−118.
(17) Esteve Agelet, L.; Rippke, G. R.; Hurburgh, C. R. Effect of
Fourier-transform instrument resolution on soybean calibration
performance. IDRC Conference Poster; 2010.
(18) Delwiche, S. R. Single wheat kernel analysis by near-infrared
transmittance: protein content. Cereal Chem. 1995, 72 (1), 11−16.

(19) Janni, J.; Weinstock, B. A.; Hagen, L.; Wright, S. Novel near-
infrared sampling apparatus for single kernel analysis of oil content in
maize. Appl. Spectrosc. 2008, 62 (4), 423−426.
(20) Spielbauer, G.; Armstrong, P. R.; Baier, J. W.; Allen, W. B.;
Richardson, K.; Shen, B.; Settles, M. High-throughput near −infrared
reflectance spectroscopy for predicting quantitative and qualitative
composition phenotypes of individual maize kernels. Cereal Chem.
2009, 86 (5), 556−564.

Journal of Agricultural and Food Chemistry Article

dx.doi.org/10.1021/jf3012807 | J. Agric. Food Chem. 2012, 60, 8314−83228322

mailto:esteve.lidia@gmail.com

